A Paradigm for AI Consciousness

Author(s)

  • Michael Johnson

Full text (open access)

Abstract

  • How can we create a container for knowledge about AI consciousness? This work introduces a new framework based on physicalism, decoherence, and symmetry. Major arguments include (1) atoms are a more sturdy ontology for grounding consciousness than bits, (2) Wolfram’s ‘branchial space’ is where an object’s true shape lives, (3) electromagnetism is a good proxy for branchial shape, (4) brains and computers have significantly different shapes in branchial space, (5) symmetry considerations will strongly inform a future science of consciousness, and (6) computational efficiency considerations may broadly hedge against “s-risk”.

Date

  • June, 2024

Citation

Areas

  • Biology, Physical Sciences, Psychology, Scientific Ethics, Technology

Biography

  • Michael is a philosopher and neuroscientist researching minds, nervous systems, why humans are beautiful, and what the future may hold. Major works include Principia Qualia (which introduced the Symmetry Theory of Valence), Neural Annealing, and Principles of Vasocomputation. Michael writes at opentheory.net.

Donations

References

  1. Faggella, D. (2023). A Worthy Successor — The Purpose of AGI

  2. Hoel, E.P. (2024). Neuroscience is pre-paradigmatic. Consciousness is why

  3. Schwitzgebel, E. (2024). The Weirdness of the World

  4. Johnson, M.E. (2022). It From Bit, Revisited

  5. Anderson, N., & Piccinini, G. (2024). The Physical Signature of Computation: A Robust Mapping Account

  6. Safron, A. (2021). IWMT and the physical and computational substrates of consciousness

  7. Rouleau, N., & Levin, M. (2023). The Multiple Realizability of Sentience in Living Systems and Beyond

  8. Bach, J. (2024). Cyber Animism

  9. Butlin, P., & Long, R., et al. (2023). Consciousness in Artificial Intelligence: Insights from the Science of Consciousness

  10. Levin, M. (2022). Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds

  11. Levin, M. (2024). The Space Of Possible Minds

  12. Piccinini, G. (2015). Physical Computation: A Mechanistic Account 

  13. Johnson, M.E. (2017). Against functionalism

  14. Aaronson, S. (2014). “Could a Quantum Computer Have Subjective Experience?”

  15. Johnson, M.E. (2016). Principia Qualia

  16. Johnson, M.E. (2019). Taking monism seriously

  17. Kleiner, J. (2024). Consciousness qua Mortal Computation

  18. Kleiner, J. (2024). The Newman Problem of Consciousness Science

  19. Hales, C.G., & Ericson, M. (2022). Electromagnetism's Bridge Across the Explanatory Gap: How a Neuroscience/Physics Collaboration Delivers Explanation Into All Theories of Consciousness

  20. Johnson, M.E. (2022). AIs aren’t conscious; computers are

  21. McCabe, G. (2004). Universe creation on a computer

  22. Schiller, D. (2024). Functionalism, integrity, and digital consciousness

  23. Tononi, G., & Koch, C. (2014). Consciousness: Here, There but Not Everywhere

  24. Pachniewski, P. (2022). Not artificially conscious

  25. Lee, A.Y. (2024). Objective Phenomenology

  26. Kleiner, J. (2024). Towards a structural turn in consciousness science

  27. Johnson, M.E. (2022). It From Bit, Revisited

  28. Ladyman, J. (2023). Structural Realism

  29. Kanai, R., & Fujisawa, I. (2023). Towards a Universal Theory of Consciousness

  30. Forthcoming from Dalrymple and from Gorard

  31. Johnson, M.E. (2016). Principia Qualia

  32. Kleiner, J., & Hoel, E.P. (2021). Falsification and consciousness

  33. Hoel, E.P. (2024). AI Keeps Getting Better at Talking About Consciousness

  34. Johnson, M.E. (2019). Taking monism seriously

  35. Safron, A. (2021). IWMT and the physical and computational substrates of consciousness

  36. Ramstead, M., et al. (2023). On Bayesian mechanics: a physics of and by beliefs

  37. Long, R. (2023). What to think when a language model tells you it's sentient

  38. Quine, W.V.O. (1960). Word and Object

  39. Johnson, M.E. (2019). What’s out there?

  40. Wollberg, E. (2024). Qualia Takeoff in The Age of Spiritual Machines

  41. Johnson, M.E. (2022). Qualia Astronomy & Proof of Qualia

  42. Aaronson, S. (2014). “Could a Quantum Computer Have Subjective Experience?”

  43. Sandberg, A., et al. (2017). That is not dead which can eternal lie: the aestivation hypothesis for resolving Fermi’s paradox

  44. Tegmark, M. (1999). The importance of quantum decoherence in brain processes

  45. Tegmark, M. (2014). Consciousness as a State of Matter

  46. Johnson, M.E. (2016). Principia Qualia

  47. Johnson, M.E. (2023). Qualia Formalism and a Symmetry Theory of Valence

  48. Wikipedia, accessed 29 April 2024. Quantum decoherence

  49. Wolfram, S., et al. (2020). The Wolfram Physics Project; example of branchial expansion

  50. Barrett, A. (2014). An integration of integrated information theory with fundamental physics

  51. Albantakis, L., et al. (2023). Integrated information theory (IIT) 4.0: Formulating the properties of phenomenal existence in physical terms

  52. Chalmers, D.J., & McQueen, K.J. (2021). Consciousness and the Collapse of the Wave Function

  53. Kleiner, J., & Ludwig, T. (2023). If consciousness is dynamically relevant, artificial intelligence isn't conscious

  54. Wikipedia, accessed 26 April 2024. Johnson-Nyquist noise

  55. Hoel, E.P., et al. (2013). Quantifying causal emergence shows that macro can beat micro; primer

  56. Johnson, M.E. (2019). Neural Annealing: Toward a Neural Theory of Everything

  57. Johnson, M.E. (2024). Minds as Hyperspheres

  58. Zurek, W.H. (2009). Quantum Darwinism

  59. Tegmark, M. (2014). Consciousness as a State of Matter

  60. Olah, C. (2024). Distributed Representations: Composition & Superposition

  61. Zurek, W.H. (2009). Quantum Darwinism

  62. Barrett, A. (2014). An integration of integrated information theory with fundamental physics

  63. Gomez-Emilsson, A., & Percy, C. (2023). Don’t forget the boundary problem! How EM field topology can address the overlooked cousin to the binding problem for consciousness

  64. Hales, C.G., & Ericson, M. (2022). Electromagnetism's Bridge Across the Explanatory Gap: How a Neuroscience/Physics Collaboration Delivers Explanation Into All Theories of Consciousness

  65. Johnson, M.E. (2016). Principia Qualia

  66. Johnson, M.E. (2023). Qualia Formalism and a Symmetry Theory of Valence

  67. Johnson, M.E. (2021). A Primer on the Symmetry Theory of Valence

  68. Wolfram, S. (2021). The Concept of the Ruliad

  69. Johnson, M.E. (2019). Taking monism seriously

  70. Safron, A., et al. (2023). Making and breaking symmetries in mind and life

  71. Wilczek, F. (2016). A Beautiful Question: Finding Nature’s Deep Design

  72. Gross, D.J. (1996). The role of symmetry in fundamental physics

  73. Brading, K., & Castelanni, E. (Ed). (2003). Symmetries in physics: philosophical reflections

  74. Johnson, M.E. (2016). Principia Qualia

  75. Johnson, M.E. (2023). Qualia Formalism and a Symmetry Theory of Valence

  76. Extropic (2024). Ushering in the Thermodynamic Future; thread on thermodynamic processors

  77. Friston, K. (2010). The free-energy principle: a unified brain theory?

  78. Ramstead, M., et al. (2023). On Bayesian mechanics: a physics of and by beliefs

  79. Safron, A. (2020). An Integrated World Modeling Theory (IWMT) of Consciousness

  80. Wittgenstein, L. (1953). Philosophical Investigations

  81. Quine, W.V.O. (1960). Word and Object

  82. Hoel, E.P. (2017). When the Map Is Better Than the Territory (see also Erik’s primer)

  83. Johnson, M.E. (2019). What’s out there?

  84. Johnson, M.E. (2023). Principles of Vasocomputation: A Unification of Buddhist Phenomenology, Active Inference, and Physical Reflex (Part I)

  85. Moore, C., Cao, R. (2008). The hemo-neural hypothesis: on the role of blood flow in information processing

  86. Jacob, M., et al. (2023) Cognition is entangled with metabolism: relevance for resting-state EEG-fMRI